

Mitigation of Fuel Fire Threat to Large Rocket Motors by Venting

Kenneth J. Graham, Technical Principal 540-854-2182 <u>ken.graham@aerojet.com</u>

October 2010

Approved for Public Release – DOD OSR 10-S-3039; Aerojet; AFRL; JIMTP

The Problem

- Venting of a container such as a rocket motor or a warhead case is a well-recognized method to potentially reduce the violent response of the system to a fuel fire threat.
 - AMRAAM TIVS
 - ARCAPS
 - 120mm Mortar with lonomer-filled Vent
 - Many others
 - The problem we are trying to solve is how to protect a large rocket motor, perhaps the size of Minuteman or Peacekeeper, while in the transportation mode.
- What is the critical vent size to prevent overpressurization and how is it determined ?

Large Motor Transport

Accidents Happen !

Solution

- The basic solution to mitigation by venting is to understand the competition between pressure rise rate and pressure decay rate.
 - For Pressure Rise > Pressure Decay the system reacts violently
 - For Pressure Rise = Pressure Decay the system is critically vented

For Pressure Rise < Pressure Decay the system reacts mildly</p>

This is what we want !

Pressure Rise

From interior ballistics, the rate of pressure rise from combustion of an energetic material is given by:

dP/dt = RTB/V * dn/dt

(1)

(2)

• where dn/dt is the time rate of change of the number of moles of product gases.

This equation may be replaced with one in which the variables are more easily measurable. Thus,

$$dP/dt = RT_{B}/V * \rho/M * \alpha/(A-BT_{0}) * S_{B}P$$

- R = molar gas constant = 8.314×10^{-5} bar m ³/mol K
- V = volume, m³
- T_B = flame temperature, K
- M = formula mass product gas, kg/mol
- ρ = density of explosive, kg/m³
- T₀ = bulk temperature of explosive, K
- α,A,B = energetic material constants (see below)
- S_B = burn surface area, m³
- P = absolute pressure, bars

Pressure Rise

The term [α/(A – BT₀)] represents the variation in burning rate with bulk explosive temperature.

- Utilizing Andreev's method, we plot the reciprocal of burning rate against bulk explosive temperature.
 - For Composition B explosive
 - α = 10⁻³ m/s-bar
 - A = 12.04
 - B = 0.0235/K
 - Thus: 1/burning rate = 12.04 0.0235T₀

Pressure Decay

When the interior pressure exceeds the outside pressure by more than 0.8 bar, the flow velocity becomes sonic and a very simple expression for the pressure-decrease results (equation 3).

$$-dP/dt = (A_v C_D/V) a^*P$$
(3)

- A = vent area, m²
- C_D = discharge coefficient, 0.6 to 1.0
- V = volume, m³
- a* = flow velocity, m/s
- P = absolute pressure, bars
- Flow through a square-edged orifice results in a discharge coefficient of approximately 0.82 because of the *vena contracta* formed by the gases exiting the vent hole.

Pressure Decay

The sonic flow velocity of the gases through the vent hole, a*, is computed from the temperature of the products, and is also affected by compressible fluid flow. Thus:

$$a^* = (RT/M)^{1/2} [k^* (2k/k+1)^{1/2} * (2/k+1)^{1/k-1}]$$
(4)

a* is approximately 725 m/s for a nominal combustion gas mixture with:

- T = 2500K
- R= 8.31434 J/mol-K
- M=0.028 kg/mol
- k=1.27

Critical Vent Area

- If the magnitudes of the pressure-decay and pressure-rise terms are equal, a critical condition results
 - The pressure-rise and pressure-decay equations can be combined.

$$dP/dt = [(RT_{B} * \rho/M * \alpha/(A-BT_{0}) * S_{B}) - (A_{v}C_{D} a^{*})] * (P/V)$$
(5)

Rearrangement gives the relationship of vent area to burning surface area

$$\mathbf{A}_{v}/\mathbf{S}_{B} = (\mathbf{R}\mathbf{T}_{B} \ \rho \ \alpha) / [\mathbf{M} \ \mathbf{C}_{D} \ \mathbf{a}^{*}(\mathbf{A} - \mathbf{B}\mathbf{T}_{0})]$$
(6)

If A_v/S_B is greater than the critical value, pressure decreases.

This is what we seek!

Critical Vent Area Ratio

For the Composition B explosive cited previously, and with an explosive density of 1700 kg/m³, the predicted critical vent-area to burn-surface-area ratio as a function of bulk temperature is:

Table 1. Critical Vent Area as a Function of Initial Explosive Temperature

T ₀ K	Critical Ratio Av/S _B
273	0.002161
288	0.002305
334	0.002896

It doesn't take much vent area to prevent pressurization !

VEC Experiments

NWC – Composition B

VEC Experiments

AFWL – Kirtland – Composition B

Air Force Venting Tests with Composition B

Summary of Experiments

- Vent areas to prevent pressurization and violent reaction in these tests are significantly less than 1% of the burning surface area.
 - Tests were conducted with end-burning test items.
- This formalism works well for items with bulk temperatures near ambient.
 - Application to the fast cookoff scenario may be successful if the vent is created at a low enough energetic material bulk temperature.

Ballistic Analysis

Minuteman III first stage motor was chosen as the example. The assumed propellant properties:

- Outer grain surface area: 42,629 sq. in.
- 70°F Burning Rate: r_b = 0.290 (P_c/1000)^{0.34}
- Temperature Coefficient: σ_p = 0.001/°F
- Characteristic Velocity: c* = 5172 ft/s
- Density: ρ = 0.0652 lb/ft³
 - □ P_c = chamber pressure in psia
 - □ r_b is burning rate in in/s

Minuteman III First Stage Motor

Ballistic Analysis

For the initial analysis, the burning rate was adjusted to a temperature of 702°F, and a single square-edged orifice was used as the vent.

Assumptions:

- The whole exterior surface of the propellant grain ignited instantaneously between the case and the grain
- All gases exited through the square-edged orifice
- The motor surface was all at the same temperature
- The Stage 1 weight is 50,550 lb_f

The 702°F burning rate, $r_b = 0.546 (P_c/1000)^{0.34}$

MM III Ballistic Analysis

First, compute the thrust using equation (7).

 $F = P_c A_t C_f \eta_F$

(7)

- F = Thrust, Ib_f
- $A_t = Throat area, in^2$ (NOTE: This is the vent size)
- C_f = Thrust coefficient = 1.25 (exit cone with no expansion)
- η_F = Thrust efficiency = 80% (square-edged orifice)

Second, apply definition of the chamber pressure using equation (8)

$$P_{c} = [(S_{B} \rho c^{*}a)/(A_{t} g_{c})]^{(1/1-n)}$$
 (8)

- S_B = the surface area, in²
- a = burning rate coefficient in the equation aPⁿ, in/s
- g_c = gravitational constant, 32.174 lb_m-ft/lb_f/s²
- n = burning rate exponent in the equation aPⁿ

MM III Ballistic Analysis

We wish to keep thrust to < 80% of stage weight to prevent propulsion. Applying this to equation 7 we get equation (9):

$$40,202 = P_c A_t (1.25)(0.8)$$
(9)

Solving for Pc through the use of equation (8) gives (10):

4

 $P_{c} = [(42629)(0.06519)(5172)(0.0521)/A_{t}(32.174)]^{1.515}$ (10)

The solution: Outer grain pressure, P_c = 4.99 psia and a required vent area of A_t = 8053 sq. in.

MM III Ballistic Analysis

This methodology was applied over a wide range of temperatures.

Venting Analysis of Minuteman in Fuel Fire

Clearly, lower temperature venting is advantageous!

Vent Area Ratio for MM III Stage 1

Table 2. Vent Area to Burn Surface Ratio as a Functionof Temperature for MM III Propellant in MM III Case.

Temperature, F	Temperature, K	A_v/S_B
300	422	0.059
400	477	0.077
500	533	0.106
600	589	0.141
700	644	0.189
702	645	0.190

Effect of Surface Temperature at Time of Venting

700°F -- 8000 in² vent area required
360°F -- 3000 in² vent area required

Comparison of Methodologies

Comparison of required vent area to burning surface area ratios for end burning and surface burning cased energetic grains

Vent Area Ratios vs. Temperature

Summary

- It is imperative to vent a cased energetic material subjected to a fuel fire threat at as low a temperature as possible, consistent with its operational requirements and a margin of safety.
 - Required vent areas increase dramatically as the temperature rises
- If the grain has a significant bore area and the flame reaches the bore, then increased vent area will be required.
- Grains that burn "cigarette fashion" and slowly self-heat require less vent area than those exposed to an engulfing fuel fire where the whole outer surface area is heated.
- It is anticipated that the vent area should be on the side of the motor case rather than on the end to prevent launching the motor.
- A ballistics-based methodology has been presented to predict the critical vent area for a motor exposed to a fuel fire.

Acknowledgements

This work was supported by the JIMTP program Contract No. FA9300-06-D-0008 Task Order 0005

Government sponsor: Air Force Research Laboratory Solid Motor Branch Edwards AFB, CA 93524